organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2-Chloroethyl)-2-methylsulfanyl-5-nitro-1*H*-benzimidazole

Severin Dri Goulizan Bi,^a Rita Kakou-Yao,^a Tia Gabriel Manh,^b A. Jules Tenon^a and Jean Pierre Aycard^{c*}

^aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidian 22. Cote d'Ivoire, ^bLaboratoire de Chimie Organique. UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Cote d'Ivoire, and ^cUniversité de Provence, Laboratoire de Spectrométrie et Dynamique Moléculaire, case 542 Avenue Escadrille Normandie Niemen, F-13397 Marseille Cedex 20, France

Correspondence e-mail: yr_kakou@yahoo.fr

Received 9 November 2007; accepted 12 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.115; data-to-parameter ratio = 22.4.

The title compound, $C_{10}H_{10}CIN_3O_2S$, exhibits three ring motifs, viz. $R_2^{(2)}(10)$, $R_2^{(2)}(8)$ and S(5), arising from C-H···O, $C-H \cdots N$ and $C-H \cdots S$ interactions, respectively, generating an [001] chain. A C-H··· π interaction (H···Cg = 2.90 Å) is also present.

Related literature

For background, see: Küçükbay et al. (2003); Bernstein et al. (1995).

Experimental

Crystal data

C10H10ClN3O2S $M_r = 271.73$ Triclinic, $P\overline{1}$ a = 4.8564 (5) Å b = 10.224 (2) Å c = 12.464 (1) Å $\alpha = 83.454 \ (5)^{\circ}$ $\beta = 79.372(5)^{\circ}$

```
\gamma = 79.719 \ (8)^{\circ}
V = 596.37 (14) \text{ Å}^3
Z = 2
Mo K\alpha radiation
\mu = 0.49 \text{ mm}^{-1}
T = 294 \text{ K}
0.50\,\times\,0.25\,\times\,0.20 mm
```

Data collection

Nonius KappaCCD diffractometer	3479 independent reflections
Absorption correction: none	2256 reflections with $I > 2.0\sigma(I)$
11977 measured reflections	$R_{\rm int} = 0.052$

Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.056$	154 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 0.92	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
3455 reflections	$\Delta \rho_{\rm min} = -0.62 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg is the centroid of the benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3—H3···O16 ⁱ	0.93	2.41	3.326 (4)	168
C6−H6···N7 ⁱⁱ	0.93	2.57	3.499 (4)	175
C11−H112· · ·O17 ⁱⁱⁱ	0.96	2.55	3.437 (4)	154
C10−H102···S13	0.96	2.68	3.168 (3)	112
$C14 - H142 \cdots Cg^{iv}$	0.96	2.90	3.836 (4)	165

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) -x + 1, -y + 2, -z; (iii) -x + 1, -y + 2, -z + 1; (iv) 2 - x, 2 - y, -z.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: CRYSTALS.

We thank the Laboratoire de Physique des Interactions Ioniques and Spectropôle, Université de Provence, and the Université Paul Cézanne, Faculté des Sciences et Techniques de Saint Jérôme, Marseille, France, for the use of their diffractometer. We also thank Mr Abou Akoun for help and advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2655).

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Küçükbay, H., Durmaz, R., Orhan, E. & Günal, S. (2003). Il Farmaco, 58, 431-437.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4798 [doi:10.1107/S1600536807058254]

1-(2-Chloroethyl)-2-methylsulfanyl-5-nitro-1*H*-benzimidazole

S. D. Goulizan Bi, R. Kakou-Yao, T. G. Manh, A. J. Tenon and J. P. Aycard

Comment

Benzimidazole and its derivatives exhibit versatile pharmacological activities (*e.g.* Küçükbay *et al.*, 2003). In order to study the influence of new substituents on the activity of the benzimidazole derivative, the title compound, (I), has been synthesized and its structure has been determined (Fig. 1).

In this structure, the nine-membered benzimidazole ring system C1/N2/C3/C4/C5/C6/N7/C8/C9 is essentially planar, the maximum deviation from planarity being 0.013 (2) Å for atom N2. The packing can be expressed as a stacking of sheets running along the *c* axis. The sheets consist of a two-dimensional hydrogen bonding network (Fig. 2), which is described by the rings of graph-set motif $R_2^2(8)$, $R_2^2(10)$ and S(5) (Bernstein *et al.*, 1995). The supramolecular aggregation is completed by the presence of C—H···II interaction between an H atom of the methyl groupe i.e H142 and the benzene ring at the symmetry position (2 - x, 2 - y, -z).

Experimental

2-Methylthio-5-Nitro-1*H*-benzimidazole (1 g, 4.8 mmol), 1,2-dichloroethane (0.75 ml, 9.6 mmol), potassium carbonate (1.32 g, 9.6 mmol) and dry dimethylformamide (DMF) (10 ml) was stirred together at 349 K. After one day (24 h), water (50 ml) was added, and the products were extracted with ethylacetate (2×100 ml). The combined organics extracts were washed with brine (2×50 ml), dried (MgSO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel. Elution: hexane/ethylacetate (80:20, *v/v*) to give the title compound as a yellow powder (0.55 g) with a melting point 401 K and 1,2-Bis(2-methylthio-5-Nitro-1*H*-benzimidazol-1-yl)ethane (0.5 g). The yellow powder of (I) was dissolved in acetone/pentane and after one day, yellow blocks of (I) were obtained. ¹H NMR (DMSO, 300 MHz, p.p.m): δ : 2.7 (S, 3H, CH₃), 4,1 (t, 2H, CH₂Cl), 4.55 and 4.65 (2 t, 2H, CH₂N), 7.5–8.6 (m, 3H, C₆H₃). ¹³C NMR (DMSO, 300 MHz, p.p.m): δ : 14.46(CH₃), 43 (CH₂Cl), 46 (CH₂N), 106.63, 110.11, 113.10, 142, 142.55, 147.32 (C4, C5, C6, C7, C8, C9), 159.40 (C=N).

Refinement

All hydrogen atoms were placed at calculated positions, with C—H = 0.93Å (aromatic) or 0.96Å (methylene and methyle) and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(c)$.

Figures

Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. Crystal packing of compound (I) viewed down the *a* axis, showing the rings of graphset motif $R_2^2(8)$, $R_2^2(10)$ and S(5). Dashed lines indicate C—H···O, C—H···N and C—H···S hydrogen bonds (details are given in table 1). H atoms not involved in hydrogen bonds have been omitted for the clarity.

1-(2-Chloroethyl)-2-methylsulfanyl-5-nitro-1H-benzimidazole

Crystal data

$C_{10}H_{10}Cl_1N_3O_2S_1$	Z = 2
$M_r = 271.73$	$F_{000} = 280$
Triclinic, PT	$D_{\rm x} = 1.513 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 401 K
<i>a</i> = 4.8564 (5) Å	Mo K α radiation $\lambda = 0.71073$ Å
b = 10.224 (2) Å	Cell parameters from 11977 reflections
c = 12.464 (1) Å	$\theta = 1.7 - 30.2^{\circ}$
$\alpha = 83.454 (5)^{\circ}$	$\mu = 0.49 \text{ mm}^{-1}$
$\beta = 79.372 \ (5)^{\circ}$	<i>T</i> = 294 K
$\gamma = 79.719 \ (8)^{\circ}$	Block, yellow
$V = 596.37 (14) \text{ Å}^3$	$0.50 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	2256 reflections with $I > 2.0\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.052$
Monochromator: graphite	$\theta_{\text{max}} = 30.2^{\circ}$
T = 294 K	$\theta_{\min} = 1.7^{\circ}$
φ scans	$h = -6 \rightarrow 6$
Absorption correction: none	$k = -13 \rightarrow 14$
11977 measured reflections	$l = -17 \rightarrow 17$
3479 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.115$	Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = $1.0/[A_0*T_0(x) + A_1*T_1(x) - A_{n-1}]*T_{n-1}(x)]$ where A_i are the Chebychev coefficients listed be- low and $x = F/F$ max Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sig-maF)^2]^2 A_i are: 203. 275. 116. 22.5
<i>S</i> = 0.92	$(\Delta/\sigma)_{\rm max} = 0.0002$
3455 reflections	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$
40 constraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The 24 reflections $(0\ 1\ 0, 0\ 2\ 0, 6\ 6\ 0, 0\ 13\ 0, 0\ -\ 1\ 1, 0\ 0\ 1, 0\ 1\ 1, 0\ 0\ 2, 0\ 1\ 2, 0\ 1\ 3, 2\ 3\ 3, 2\ 2\ 4, -5\ 6\ 5, 3\ 5\ 6, 1\ 13\ 6, -3\ -\ 10\ 8, 4\ -\ 8\ 8, -4\ -\ 6\ 8, -3\ -\ 8\ 10, 6\ 3\ 10, -2\ -\ 7\ 13, 2\ -\ 3\ 15, 3\ 0\ 15, -1\ 3\ 15)$ have been measured with too low intensities. It might be caused by some systematical error, probably by shielding by a beam stop of these diffractions. They were not used in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
H3	0.9516	0.9537	0.3842	0.0552*
H5	0.3229	1.1952	0.2531	0.0638*
H6	0.4150	1.0751	0.0989	0.0624*
C1	1.0486 (7)	0.7740 (3)	0.1034 (2)	0.0484
N2	1.0931 (5)	0.7968 (2)	0.20479 (18)	0.0451
C3	0.8469 (6)	0.9773 (3)	0.3276 (2)	0.0458
C4	0.6300 (7)	1.0843 (3)	0.3293 (2)	0.0493
C5	0.4680 (6)	1.1222 (3)	0.2467 (2)	0.0535
C6	0.5217 (7)	1.0513 (3)	0.1549 (2)	0.0524
N7	0.8409 (5)	0.8575 (2)	0.06702 (18)	0.0496
C8	0.8969 (6)	0.9070 (3)	0.2358 (2)	0.0416
C9	0.7415 (6)	0.9436 (3)	0.1493 (2)	0.0438
C10	1.2920 (6)	0.7179 (3)	0.2707 (2)	0.0513

supplementary materials

C11	1.1513 (7)	0.6340 (3)	0.3652 (2)	0.0580
Cl12	0.9721 (2)	0.51698 (9)	0.32109 (9)	0.0798
S13	1.2621 (2)	0.64420 (9)	0.03348 (7)	0.0667
C14	1.1046 (9)	0.6618 (4)	-0.0875 (3)	0.0722
N15	0.5685 (7)	1.1634 (3)	0.4244 (2)	0.0666
O16	0.7024 (6)	1.1302 (3)	0.49822 (19)	0.0857
O17	0.3844 (8)	1.2587 (3)	0.4272 (2)	0.1390
H141	1.2031	0.5951	-0.1354	0.0864*
H142	1.1169	0.7488	-0.1244	0.0864*
H143	0.9088	0.6510	-0.0675	0.0864*
H101	1.3873	0.7774	0.2993	0.0612*
H102	1.4284	0.6599	0.2244	0.0612*
H111	1.2943	0.5859	0.4052	0.0696*
H112	1.0163	0.6917	0.4123	0.0696*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0641 (19)	0.0457 (15)	0.0402 (14)	-0.0146 (14)	-0.0149 (13)	-0.0044 (12)
N2	0.0521 (14)	0.0466 (13)	0.0392 (12)	-0.0039 (11)	-0.0160 (10)	-0.0074 (10)
C3	0.0485 (16)	0.0531 (16)	0.0378 (14)	-0.0059 (13)	-0.0144 (12)	-0.0039 (12)
C4	0.0551 (18)	0.0547 (17)	0.0372 (14)	-0.0022 (14)	-0.0101 (13)	-0.0069 (12)
C5	0.0521 (18)	0.0567 (18)	0.0492 (16)	0.0011 (14)	-0.0145 (14)	-0.0001 (14)
C6	0.0574 (18)	0.0581 (18)	0.0439 (15)	-0.0061 (15)	-0.0218 (14)	0.0030 (13)
N7	0.0645 (16)	0.0502 (13)	0.0396 (12)	-0.0130 (12)	-0.0197 (11)	-0.0032 (10)
C8	0.0440 (15)	0.0448 (14)	0.0384 (13)	-0.0080 (12)	-0.0137 (11)	-0.0016 (11)
C9	0.0499 (16)	0.0484 (15)	0.0370 (13)	-0.0131 (13)	-0.0152 (12)	0.0008 (11)
C10	0.0493 (17)	0.0586 (18)	0.0482 (16)	-0.0001 (14)	-0.0194 (13)	-0.0089 (13)
C11	0.066 (2)	0.0572 (18)	0.0492 (17)	0.0041 (16)	-0.0207 (15)	-0.0033 (14)
Cl12	0.0984 (8)	0.0616 (5)	0.0847 (7)	-0.0180 (5)	-0.0308 (6)	0.0057 (5)
S13	0.0882 (7)	0.0606 (5)	0.0533 (5)	-0.0004 (5)	-0.0189 (4)	-0.0199 (4)
C14	0.095 (3)	0.083 (3)	0.0470 (18)	-0.029 (2)	-0.0134 (18)	-0.0185 (17)
N15	0.075 (2)	0.0695 (19)	0.0499 (16)	0.0137 (15)	-0.0149 (14)	-0.0143 (14)
O16	0.107 (2)	0.0924 (19)	0.0611 (15)	0.0189 (16)	-0.0404 (15)	-0.0319 (14)
O17	0.167 (3)	0.142 (3)	0.086 (2)	0.098 (3)	-0.052 (2)	-0.056 (2)

Geometric parameters (Å, °)

Н3—С3	0.930	N7—C9	1.389 (3)
Н5—С5	0.930	C8—C9	1.407 (3)
Н6—С6	0.930	C10-C11	1.508 (4)
C1—N2	1.372 (3)	C10—H101	0.960
C1—N7	1.313 (4)	C10—H102	0.960
C1—S13	1.742 (3)	C11—Cl12	1.786 (3)
N2—C8	1.381 (3)	C11—H111	0.960
N2—C10	1.457 (3)	C11—H112	0.960
C3—C4	1.376 (4)	S13—C14	1.791 (3)
C3—C8	1.381 (3)	C14—H141	0.960
C4—C5	1.389 (4)	C14—H142	0.960

C4—N15	1.466 (4)	C14—H143	0.960
C5—C6	1.383 (4)	N15—O16	1.207 (3)
С6—С9	1.388 (4)	N15—O17	1.198 (3)
N2-C1-N7	114.3 (2)	N7—C9—C6	129.3 (2)
N2—C1—S13	120.2 (2)	N2-C10-C11	113.3 (3)
N7—C1—S13	125.4 (2)	N2-C10-H101	108.6
C1—N2—C8	105.8 (2)	C11-C10-H101	108.6
C1—N2—C10	128.0 (2)	N2-C10-H102	108.4
C8—N2—C10	126.1 (2)	C11-C10-H102	108.5
Н3—С3—С4	122.4	H101—C10—H102	109.5
Н3—С3—С8	122.5	C10-C11-Cl12	112.4 (2)
C4—C3—C8	115.1 (2)	C10-C11-H111	108.6
C3—C4—C5	124.1 (3)	Cl12—C11—H111	108.7
C3—C4—N15	117.6 (2)	C10-C11-H112	108.8
C5—C4—N15	118.3 (3)	Cl12—C11—H112	108.9
С4—С5—Н5	120.0	H111—C11—H112	109.5
C4—C5—C6	120.1 (3)	C1—S13—C14	100.00 (16)
Н5—С5—С6	119.9	S13—C14—H141	109.6
С5—С6—Н6	121.2	S13—C14—H142	109.5
С5—С6—С9	117.6 (3)	H141—C14—H142	109.5
Н6—С6—С9	121.2	S13—C14—H143	109.3
C1—N7—C9	104.1 (2)	H141—C14—H143	109.5
C3—C8—N2	131.8 (2)	H142—C14—H143	109.5
C3—C8—C9	122.6 (3)	C4—N15—O16	119.2 (3)
N2—C8—C9	105.6 (2)	C4—N15—O17	119.1 (3)
C8—C9—N7	110.2 (2)	O16—N15—O17	121.7 (3)
C8—C9—C6	120.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots A$	
C3—H3…O16 ⁱ	0.93	2.41	3.326 (4)	168	
C6—H6…N7 ⁱⁱ	0.93	2.57	3.499 (4)	175	
C11—H112…O17 ⁱⁱⁱ	0.96	2.55	3.437 (4)	154	
C10—H102…S13	0.96	2.68	3.168 (3)	112	
Symmetry codes: (i) $-x+2$, $-y+2$, $-z+1$; (ii) $-x+1$, $-y+2$, $-z$; (iii) $-x+1$, $-y+2$, $-z+1$.					

